Transfer Hydrogenation of p-Substituted α -Methylstyrenes by 9,10-Dihydroanthracene ¹

Matthias Gerst and Christoph Rüchardt *

Institut für Organische Chemie und Biochemie der Universität Freiburg, Albertstraße 21, D-79104 Freiburg, FRG

Summary: The rate constants k_2 of the uncatalyzed transfer hydrogenation of five p-substituted α -methylstyrenes **1a-e** vary less then a factor 2 (300 °C) which supports the proposed radical mechanism (scheme 2) and excludes hydride transfer as an alternative.

In previous work ^{1,2,3} it has been shown, that α -methylstyrene **1a** (S = H) is hydrogenated to cumene **3a** (S = H) by 9,10-dihydroanthracene (DHA) **2** at 270 - 320 [•]C without the addition of a catalyst.⁴

Scheme 1: Transfer hydrogenation of substituted α -methylstyrenes 1 by DHA 2

Results from mechanistic investigations ^{2,3a} led to the conclusion that the reaction occurs in a three step process initiated by a rate determining molecule induced radical formation⁵ between 1 and DHA 2.

Scheme 2: Molecule induced radical formation by H-transfer

7734

Experiments with 9,9',10,10'-tetradeuterio-9,10-dihydroanthracene proved that this step was irreversible under our reaction conditions.² The cumyl radicals **5** are rapidly trapped by excess DHA **2** and the 9-hydroanthyl radicals **6** disproportionate to DHA **2** and anthracene **4**.⁶

In order to get additional evidence for this mechanistic proposal and in particular for excluding a hydride transfer mechanism as an alternative⁷ we investigated the influence of p-substituents S in α -methylstyrene on the reaction rate at different temperatures (270 - 320 °C). Substituent effects in radical reactions which are not subject to polar effects generally are small.⁸

The substituted α -metylstyrenes **1b** - **1e** were synthesized from the corresponding acetophenones by the Wittig reaction for **1b-d** or CH₃Li addition followed by dehydratisation for **1e**. The products were pure according to GC (> 99%). To determine the rate constants k₂, the ampoule technique^{3a} and GCanalyses were used. The cumenes **3** and anthracene **4** were the only reaction products and found in yields >95 %. In table 1 the rate constants k₂ are summarized.

⊤ [°C] ^a	10 ⁵ k ₂	10 ⁵ k ₂	10 ⁵ k ₂	10 ⁵ k ₂	10 ⁵ k ₂
	S = H	S = C(CH ₃) ₃	S = CI	S = CN	S = OCH ₃
270.0	3.88 ± 0.24	3.53 ± 0.17	4.29 ± 0.15	-	3.57 ± 0.04
280.0	5.22 ± 0.07	5.48 ± 0.24	7.45 ± 0.24	15.52 ± 0.60 ^b	4.87 ± 0.48
290.0	7.82 ± 0.40	-	-	24.79 ± 0.37 ^C	-
300.0	15.42 ± 0.31	15.43 ± 0.24	21.12 ± 0.21	36.66 ± 0.44 ^d	17.02 ± 0.20
311.0	22.22 ± 0.55	25.29 ± 0.77	32.45 ± 0.44	•	26.47 ± 0.13
320.0	37.85 ± 0.31	43.03 ± 1.55	48.99 ± 1.66	96.04 ± 4.08	38.28 ± 0.30

Table 1: Rate constants k₂ for the transfer hydrogenation of 1 by DHA 2

Concentrations: **1** [0.08 M], **2** [1.0 M] in diphenyl ether; ^a T \pm 0.5 °C; ^b T = 278.0 °C; ^c T = 288.0 °C; ^d T = 297.0 °C.

The minimal influence of the substituents S on the rates indicates that the conjugation energy between S and the double bond in 1 must be about the same as between S and the odd electron in 5. Only for S = CN the rate is somewhat enhanced which is due to the large radical stabilization effect of CN substituents.⁹

From the temperature dependence of the rate constants k_2 the activation parameters were calculated by the Eyring equation (table 2).

Styrene derivative	∆H [‡] [kcai moi ⁻¹]	∆S [‡] [e.u.]	∆G [‡] 300°C [kcal mol ⁻¹]
1a ¹⁰	31.00 ± 1.32	-23.24 ± 2.29	44.32 ± 1.32
1b	30.76 ± 1.00	-23.54 ± 1.75	44.26 ± 0.98
1c	29.43 ± 0.93	-25.33 ± 1.63	43.94 ± 0.90
1d	27.07 ± 0.31	-28.01 ± 0.55	43.12 ± 0.38
1e	29.46 ± 0.62	-25.76 ± 1.09	44.23 ± 0.61

Table 2: Activation parameters for the transfer hydrogenation of 1 by DHA 2

They are also nearly insensitive towards p-substituents as expected. The activation enthalpy ΔH^{\ddagger} for the reaction of α -methylstyrene **1a** was calculated from thermochemical data as $\Delta H^{0}(f,g) = 31.5 \pm 2.0 - 34.2 \pm 2.3$ kcal mol⁻¹ ² assuming radical intermediates. This supports the proposed mechanism. The activation entropies ΔS^{\ddagger} for this bimolecular reaction are negative as expected and decrease parallel with ΔH^{\ddagger} . Therefor $\Delta G^{\ddagger}_{300^{\circ}C}$ was almost constant in the series **1a** - **1e**. A compensation between ΔH^{\ddagger} and ΔS^{\ddagger} was also observed in other uncatalyzed transfer hydrogenations.¹¹ It proved to be significant for the reaction mechanism and not due to error compensation.¹²

The kinetic results of the transfer hydrogenation of p-substituted α -methylstyrenes 1 by DHA 2 are in accord with the proposed radical mechanism and exclude hydride transfer as an alternative.

Acknowledgements:

The authors are grateful to the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support.

References:

- 1. Bimolecular Formation of Radicals by H-Transfer 5. For 4 see M. Gerst, C. Rüchardt, *Tetrahedron Lett.* 1993 in press.
- C. Rüchardt, M. Gerst, M. Nölke, Angew. Chem. 1992, 104, 1516; Angew. Chem. Int. Ed. Engl. 1992, 31, 1523 - 1525.

- a) M. Gerst, C. Rüchardt, *Chem. Ber.* **1993**, *126*, 1039 1045; b) C. Rüchardt, M. Gerst, J. Ebenhoch, H.-D. Beckhaus, E. E. B. Campbell, R. Tellgmann, H. Schwarz, T. Weiske, S. Pitter, *Angew. Chem.* **1993**, *105*, 609 611; *Angew. Chem. Int. Ed. Engl.* **1993**, *32*, 584 586.
- see R. A. W. Johnstone, A. H. Wilby, *Chem. Rev.* 1985, 85, 129 170; G. Zassinovich, G. Mestroni, S. Gladiali, *Chem. Rev.* 1992, 92, 1051 1069.
- W.A. Pryor, L.D. Lasswell, Advances in Free Radical Chemistry, Bd. 5 (ed. G.H. Williams), Academic Press, New York, London, San Francisco, 1975, 27 - 99; J.A.K. Harmony, Methods in Free Radical Chemistry, Bd. 5 (ed. E.S. Huyser), Marcel Dekker Inc., New York 1974, 101 - 176.
- 6. Concerning the question of H-transfer by the 9-hydroanthryl radicals 6 see ref. 2. and D. M. Camioni, S. T. Autrey, J. A. Franz, *J. Phys. Chem.* **1993**, *97*, 5791-5792.
- 7. A pericyclic H-transfer is symmetry forbidden as a thermal reaction.
- see e.g. R. A. Jackson in Substituent Effects in Radical Chemistry (ed. H. G. Viehe, Z. Janousek, R. Merényi), Nato ASI Series C, Vol 189, 325 - 328, 1986.
- 9. C. Rüchardt, H.-D. Beckhaus, *Topics in Current Chem.* **1985**, *130*, 1-22; J. Pakusch, H.-D. Beckhaus, C. Rüchardt, *Chem. Ber.* **1991**, *124*, 1191-1198.
- 10. When 14 k₂ data were used (measured in the course of about one year) with different DHA concentrations [0.4 1.6 M] the following activation parameters were calculated: $\Delta H^{\ddagger} = 33.52 \pm 1.29 \text{ kcal mol}^{-1}$, $\Delta S^{\ddagger} = -20.60 \pm 2.27 \text{ e.u.}$, $\Delta G^{\ddagger}_{300^{\circ}C} = 44.27 \pm 1.27 \text{ kcal mol}^{-1}$.
- 11. J. Ebenhoch, Diplomarbeit, Universität Freiburg 1992.
- 12. K. A. Conners, Chemical Kinetics, VCH Verlagsgesellschaft, Weinheim, New York, Cambridge, 1990, 368; R. C. Peterson, J. H. Markgraf, S. D. Ross, J. Am. Chem. Soc. 1961, 83, 3819 3823.

(Received in Germany 16 August 1993; accepted 29 September 1993)